Challenges in assessing the economic value of treatments for rare diseases: Hemophilia prophylaxis

Scott Grosse, PhD

THETA Rounds
University of Toronto
May 17, 2013

The findings and conclusions in this presentation have not been formally disseminated by the Centers for Disease Control and Prevention and should not be construed to represent any agency determination or policy.
Effectiveness of therapies in improving outcomes

- **Types of outcomes**
 - Natural outcomes
 - Life-years saved
 - Preference-weighted outcomes
 - Quality-adjusted life-years or QALYs
 - Willingness to pay or WTP

- **Evidence based for effectiveness**
 - Limited RCT data
 - Limits to generalizability
 - Use of observational data
 - Spectrum of disease
 - Controlling for comorbidities
 - Representativeness of clinical case series or registries
Economic value of outcomes

- How much is it worth to save/extend a life?
- How much is it worth to improve quality of life?
- Does the economic value of life or quality of life depend on context?
 - Is it higher for someone with a serious, life-threatening disorder?
 - Does it depend on the type of disorder?
 - Does it vary with prevalence of the disorder? Are we willing to spend more per person for conditions that affect fewer people?
Congenital hemophilia – overview

- **Two types**
 - Hemophilia A caused by factor VIII deficiency
 - Hemophilia B caused by factor IX deficiency
 - Total incidence 1 in 5000 males, all races and ethnicities
 - 85% hemophilia A, 15% hemophilia B
 - X-linked inheritance
 - Predominantly affects males

- **Classification by level of clotting factor in blood**
 - Severe – <1% of normal
 - Moderate – 1-5% of normal
 - Mild – 6-49% of normal
Complications of hemophilia

- **Bleeding**
 - Intracranial
 - Joint bleeds
 - Joint damage
 - Pain

- **Treatment complications**
 - Inhibitors
 - Bloodborne infections
 - Port for infusion
 - Infections
 - Thrombosis
Treatment options

- Episodic or on-demand treatment for bleeds
- Ad hoc prophylaxis to prevent bleeds, e.g., surgeries
- Intermittent prophylaxis
- Routine prophylaxis
 - Timing of initiation
 - After joint bleeds
 - Before first joint bleed – primary prophylaxis
 - Intensity of use
Economic value of prophylaxis

- Clinically recommended but costly
- Varying estimates of incremental cost-effectiveness (ICER)
 - Miners et al. (2002) – UK: £46,500 per QALY
 - Lippert et al. (2005) – Europe: >€1 million per QALY
 - Risebrough et al. (2008) – Canada: >CA$1 million per QALY
 - Miners et al. (2009) – UK: £38,500 per QALY
 - Colombo et al. (2011) – Italy, €40,000 per QALY
 - Farrugia et al. (2013) – USA, US$68,000 per QALY

- What drives the differences in ICERs?
Studies of preferences on prophylaxis and health states in hemophilia: hypothetical scenarios

- Canadian standard gamble study (Naraine et al. 2002)
- 30 members of the public, 30 parents of children with hemophilia, and 28 adults with hemophilia
- 7 hypothetical scenarios
 - Least-preferred: episodic treatment with frequent bleeds (1 per month)
 - 0.825 (public), 0.895 (patients), 0.915 (parents)
 - Averaged across scenarios, on-demand treatment had SG weights lower by 8% relative to prophylaxis
 - Low-dose prophylaxis without port preferred to standard high-dose prophylaxis
US standard gamble study (Wasserman et al. 2005)

- 64 adult patients, 64 pediatric patients (parent proxies)
- 9 health states
 - 2 states for severe hemophilia A without severe joint disease with episodic vs. prophylactic treatment
 - Adult patients: 0.799 for episodic, 0.811 for prophylaxis (difference of 1.5%)
 - Pediatric patients no difference in SG weights by treatment type: 0.868 and 0.872
- Hypothetical comparisons
European survey using SF-36 and SF-6D (Lippert et al. 2005)

- 500 males ages 14-83 in 4 European countries
- Mean SF-6D utility scores by age and treatment type
 - Age 30 or under
 - 0.76 prophylaxis
 - 0.73 episodic
 - Over age 30
 - 0.68 prophylaxis
 - 0.66 episodic
European survey using EQ-5D (Noone et al. 2011)

- 58 respondents from France, Ireland, Sweden, UK ages 20-35 with severe hemophilia

- Mean weight by country
 - Sweden 0.93 – universal prophylaxis
 - France, Ireland, UK 0.73 – 0.76

- Individual lifetime experience with prophylaxis
 - Lifetime (primary) – 0.88 (mostly Swedish patients)
 - >50% of lifetime – 0.77
 - <50% of lifetime – 0.79
 - Never on prophylaxis – 0.72
European and Canadian patient survey using EQ-5D (Noone et al. 2013)

- 116 respondents from Canada, France, Ireland, Netherlands, Poland, UK ages 18-35 with severe disease

- **Mean weight by country and % with on-demand**
 - Netherlands: 0.915 and 8%
 - Canada: 0.791 and 13%
 - Ireland: 0.786 and 20%
 - UK: 0.768 and 8%
 - France: 0.687 and 62%
 - Poland: 0.629 and 79%
Noone et al. (2013)

- Among 103 with no history of inhibitor
 - Lifetime (primary) – 0.866
 - >50% of lifetime – 0.812
 - <50% of lifetime – 0.755
 - Never on prophylaxis – 0.619

- Among 13 with inhibitor, 0.798
Comparison of Noone et al. surveys

- **Contrasts for France and Ireland**
 - **France**
 - 2011 article (n=10) mean EQ-5D weight 0.74
 - 2013 article (n=14) mean EQ-5D weight 0.687
 - **Ireland**
 - 2011 article (n=19) mean EQ-5D weight 0.68
 - 2013 article (n=17) mean EQ-5D weight 0.786

- **High weight for Dutch sample not confirmed by Den Uijl et al. (2012)**
 - Mean EQ-5D weight for 60 young adults with severe hemophilia 0.80 despite lifetime prophylaxis
Conclusions

- No clear evidence of magnitude of difference in QALY weights in severe hemophilia by duration of use of prophylaxis
 - Contradictory findings for Dutch samples from Noone and Den Uijl
 - Inconsistent rankings of countries between surveys by Noone et al.
 - No information on differences by prophylaxis use within populations
Cost-utility analyses: mean utilities for patients on prophylaxis vs. on-demand treatment

- **Systematic review (Miners 2013):**
 - Miners et al. (2002) – UK: 0.86 vs. 0.67 (28% higher for Prophy)
 - Lippert et al. (2005) – Europe: 0.77 vs. 0.73 (8% higher for Prophy)
 - Risebrough et al. (2008) – Canada: 0.950 vs. 0.905 (5% higher for Prophy)
 - Miners et al. (2009) – UK: 0.71 vs. 0.50 (42% higher for Prophy)
 - Colombo et al. (2011) – Italy, copied Miners et al. (2002)

- **Farrugia et al. (2013) – Sweden, 1.00 vs. 0.67 (50% higher for Prophy)**
Explanation of QALY estimates in Miners analyses

- Prophylaxis assumed to improve HRQL for severe hemophilia to that of mild/moderate disease

- Miners et al. (1999) reported EQ-5D weights for 166 UK patients not on prophylaxis
 - Mean of 0.67 for severe hemophilia (n=66)
 - Mean of 0.85 for mild/moderate hemophilia (n=100) (27% higher)
Issues with assumptions

- No control for comorbidity with HIV infection
- Prophylaxis does not make severe hemophilia equivalent to mild/moderate hemophilia
 - Den Uijl et al. (2012) report mean weight of 0.80 for severe hemophilia with lifetime prophylaxis vs. 0.92 for moderate hemophilia (15% higher)
Canadian study of HUI weights stratified by HIV seropositivity (Barr et al. 2002)

- Not controlling for HIV, mean HUI2 and HUI3 weights
 - 0.75 and 0.66 for severe hemophilia
 - 0.85 and 0.77 for mild/moderate hemophilia (12-14% higher)

- Among those without HIV infection
 - 0.80 and 0.71 for severe hemophilia
 - 0.85 and 0.77 for mild/moderate hemophilia (6-8% higher)

- Implications
 - Not controlling for HIV status can bias differences
 - Important differences between studies
Conclusions about QALY estimates

- Not clear how much prophylaxis improves HRQL in severe disease, may not be equivalent to mild/moderate hemophilia not supportive
 - Farrugia et al. also assume age-specific mortality much lower with prophylaxis, equivalent to mild-moderate hemophilia

- Published estimates of utility for adults with severe hemophilia confounded by HIV

- Direct estimates of utilities for prophylaxis confounded by differences between populations
 - No data on differences by treatment status within national populations
Framing New Studies

- Need to ask specific questions, such as
 - What is the incremental cost of introducing primary prophylaxis in a population where prophylaxis is usually started after 2 years of age?
 - How long should prophylaxis continue in adults?
- Are less resource intensive forms of prophylaxis cost-effective?
- Can discrete choice experiments provide additional information about perceived value of prophylaxis?
Economic costs of hemophilia treatment in US

- Analysis of private and public health insurance claims data for years 2004-2008 (Guh et al. Haemophilia 2012)
- Mean and median annual per person treatment costs of approximately US$150,000 and US$50,000 for both insurance types
 - Unable to classify patients by level of severity
 - Pharmacy data on factor use could not be used to identify who was on prophylaxis
- Mean costs for those using bypassing agents for an inhibitor about $500,000 per year
 - 3% of hemophilia A patients with employer-sponsored insurance
 - 8% of hemophilia A patients with public insurance
Financial Implications of Prophylaxis

- Estimates of the impact of routine prophylaxis on health care payers are not well documented
 - Cost varies by body weight, dose, and frequency
 - Lack of data on actual amount of factor concentrate used in prophylaxis

- Farrugia et al. (2013) propose that primary prophylaxis can reduce inhibitor development
 - Assumed 90% reduction
 - Inhibitor treatment is costly