Social sciences and ethics in early HTA

What have I learned about the twin challenges of user involvement, and social and ethical issues?

Pascale Lehoux, Canada Research Chair on Health Innovations

Full Professor, Dept. of Health Administration, Institute of Public Health Research of University of Montreal (IRSPUM)

THETA 4th Annual Knowledge to Policy Day, University of Toronto, May 29th, 2013
AETMIS (1994-2004)

Upstream Research (2005-…)

KT&E activities...

A personal timeline...

Downstream Research (1992-2006)

AETMIS (1994-2004)

Upstream Research (2005-…)

A personal timeline...
1st observations-Downstream research
Hypotheses about the context of use and users’ expectations

- Designers
 - Setting
 - Technology
 - Initial plan

- Users

Real world

Does the technology achieve stated goals?
Does it induce other effects?
Theory of use: planned vs. real world

(Re)production of structures

Physicians as users
Social & technical adaptation (use in context)
Teleconsultation

Constraints
Duality of structures
Opportunities

Clinical & social routines (anxiety & self-esteem)
Definition of users’ needs
1st observation—Downstream research

Technology developers’ hypotheses regarding users’ expectations and the context of use are often under-developed.

Yet, they pave the way to failures, shortcomings and unanticipated learning-by-doing.
2nd observation-Social sciences and ethics
How medical specialists appraise three controversial health innovations: scientific, clinical and social arguments

Pascale Lehoux¹, Jean-Louis Denis¹, Melanie Rock², Myriam Hivon³ and Stephanie Tailliez³
Value of technology

- Value is not to be found in the technology itself
- Rather, it is embedded in the meaningful activities that it helps bring about Ramirez (1999)
- Value is intimately linked to a technology’s perceived ability to extend users’ competencies and range of action
<table>
<thead>
<tr>
<th>Clinical</th>
<th>Technical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact on clinical activities and outcomes</td>
<td>Technical assets and comparison with technological alternatives</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural</td>
<td>Human</td>
</tr>
<tr>
<td>Impact on work processes and health care structures</td>
<td>Response to clinicians’ and patients’ values, expectations and constraints</td>
</tr>
<tr>
<td>Clinical</td>
<td>Technical</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Reducing risks and complications associated to current practices</td>
<td>Real-time feedback</td>
</tr>
<tr>
<td>Effectiveness, safety and patient outcomes</td>
<td>Precision, performance and simplicity</td>
</tr>
<tr>
<td>Precision, early diagnosis, improved detection rate</td>
<td>Modularity, flexibility, interoperability and adaptability</td>
</tr>
<tr>
<td>Objectivity, predictability, improved clinical decision-making</td>
<td>Providing more biomedical information</td>
</tr>
<tr>
<td>Proactive care/responsiveness</td>
<td>Technical improvements reducing side effects</td>
</tr>
<tr>
<td>Support research</td>
<td>Completeness of the solution</td>
</tr>
<tr>
<td>Reach a greater number of patients</td>
<td>Accuracy of databases</td>
</tr>
<tr>
<td>Feedback to caregivers</td>
<td>Paperless environment</td>
</tr>
<tr>
<td>Compliant patients</td>
<td>Transportability</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Implications

- Clinical and technical improvements are, in principle, unlimited; they fuel each other.
- Structural valuable features are often in direct contradiction with those in the other categories.
- How do we sort out which technologies bring a more (or less) valuable response to health care needs?
2nd observation—Social sciences and ethics

We continuously mobilize, explicitly or tacitly, social and ethical claims to justify why a given technology is valuable or not.

But, our ability to reason the “big picture” remains limited.
3rd observation - User involvement in technology development
Clinicians as technology designers?

- Innovation policies increasingly foster collaborative ventures between industry and clinicians

- Clinicians can, in principle, identify and articulate **clinical needs** and provide relevant input regarding the **context of use**
Design process

Problem-setting

Problem-solving

Design and user involvement strategies

Needs and issues prioritized
Two contrasting problem-solving strategies

- **Problem-driven processes**
 - Significant efforts are devoted to documenting and analyzing the problem the technology is supposed to solve

- **Solution-driven processes**
 - Mostly seek to further develop a technological solution (Kruger & Cross, 2006)
<table>
<thead>
<tr>
<th>Problem-setting</th>
<th>Labor decision support software</th>
<th>Home telehealth monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Needs and issues prioritized</td>
<td>Birth-related injuries wrongly perceived as unpredictable</td>
<td>Growing clinical needs Healthcare system challenges</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem-solving</th>
<th>Solution-driven design</th>
<th>Problem-driven design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design and user involvement strategies</td>
<td>Late and low user involvement</td>
<td>Early and high user involvement</td>
</tr>
</tbody>
</table>
1. The way a technology design team engages in problem-setting is influenced by its initial hypothesis regarding the needs and issues its innovation is supposed to address.

2. Subsequently, the type of design process it will deploy (e.g., problem- vs. solution-driven) conditions the scope of user feedback it may gather and respond to (Lehoux et al., in press).
Implications

- A solution-driven process may support focused R&D activities, but it narrows down the scope of user feedback that may be gathered:
 - It emphasizes usability over relevance

- While clinical needs and health systems needs may at times be synergistic, there are situations in which they are conflicting
3rd observation-User involvement

Health services and policy research expertise would bring a valuable, early contribution to technology development
Can “early HTA” help address the twin challenges?

Social/ethical issues
- Secondary Research
 - Reviews (qual, quant or mixed)
 - Quantitative
 - Qualitative
- Primary research

User involvement (patients, public, clinicians, decision-makers, etc.)
- In HTA
 - Agency-level
 - Report-level
- In technology development
 - +/- structured process
What (I think) I have learned

- Public and/or patient involvement is not a substitute for a proper analysis of ethical and social issues.

- User involvement is not sufficient for designing health technologies that are (more) relevant from a healthcare system standpoint.
What (I think) I have learned

- Clear need to flesh out/validate technology developers’ hypotheses about valuable goals and features
- And to spell out what health system needs and challenges are

Two video clips on Hinnovic.org
What (I think) I have learned

“Downstream” research
- Arrives too late to:
 - Realign substantially technology design assumptions
 - Address relevance

“Upstream” research
- Arrives too early to:
 - Tap on learning-by-doing
 - “Rank order” user preferences
What health technologies do we need to overcome the challenges of healthcare systems?